Accurately Model the Kuramoto--Sivashinsky Dynamics with Holistic Discretization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurately Model the Kuramoto-Sivashinsky Dynamics with Holistic Discretization

We analyse the nonlinear Kuramoto–Sivashinsky equation to develop accurate discretisations modeling its dynamics on coarse grids. The analysis is based upon centre manifold theory so we are assured that the discretisation accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing isolating int...

متن کامل

Holistic finite differences accurately model the dynamics of the Kuramoto-Sivashinsky equation

We analyse the nonlinear Kuramoto-Sivashinsky equation to develop an accurate finite difference approximation to its dynamics. The analysis is based upon centre manifold theory so we are assured that the finite difference model accurately models the dynamics and may be constructed systematically. The theory is applied after dividing the physical domain into small elements by introducing insulat...

متن کامل

Finite Difference Discretization of the Kuramoto–sivashinsky Equation

We analyze a Crank–Nicolson–type finite difference scheme for the Kuramoto– Sivashinsky equation in one space dimension with periodic boundary conditions. We discuss linearizations of the scheme and derive second–order error estimates.

متن کامل

Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.

We undertake an exploration of recurrent patterns in the antisymmetric subspace of the one-dimensional Kuramoto-Sivashinsky system. For a small but already rather "turbulent" system, the long-time dynamics takes place on a low-dimensional invariant manifold. A set of equilibria offers a coarse geometrical partition of this manifold. The Newton descent method enables us to determine numerically ...

متن کامل

A Hybrid Neural Network Model for the Dynamics of the Kuramoto-sivashinsky Equation

A hybrid approach consisting of two neural networks is used to model the oscillatory dynamical behavior of the Kuramoto-Sivashinsky (KS) equation at a bifurcation parameter α= 84.25. This oscillatory behavior results from a fixed point that occurs at α= 72 having a shape of two-humped curve that becomes unstable and undergoes a Hopf bifurcation at α= 83.75. First, Karhunen-Loève (KL) decomposit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Dynamical Systems

سال: 2006

ISSN: 1536-0040

DOI: 10.1137/050627733